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Portfolio  
Loss Analysis:
Extending the 
Large Pool  
Approximation 
How to relax the Vasicek  

portfolio loss distribution  

assumptions of an infinite  

number of loans and of  

the homogeneity of loan  

characteristics.
By J.  M. Pimbley

A
ubiquitous challenge in the financial world is the 
analysis of  the risk of  a portfolio of  financial in-
struments.1 The basis of  structured finance is the 
specification of  an underlying portfolio of  risky 
assets, such as residential and commercial real es-

tate loans and consumer receivables (for credit card and auto 
loans). The future performance of  the underlying portfolio 
directly determines the performance of  the structured finance 
debt obligations of  the transaction that hosts the portfolio.

Banks and bank regulators create mathematical models to 
project the likely behavior of  such portfolios in order to assign 
capital to individual holdings or to entire bank portfolios.2 To 
“assign capital,” it is necessary to understand how much re-
serve to hold against potential loss. Estimation of  this reserve 
requires specification of  the cumulative distribution function 
(CDF) for portfolio loss. Debt ratings for structured finance 
transactions also require knowledge of  this portfolio CDF.3 

Vasicek Infinite Pool Size Result
Oldrich Vasicek provided the founding contribution to the de-
termination of  an approximate portfolio CDF for credit losses 
in a portfolio of  debt instruments.4 With the assumptions that 
each loan has identical default probability p, size, and loss-
given-default (LGD), that each loan has a single asset correla-
tion  (0 <  < 1)with every other loan and that the number of  
loans approaches infinity, Vasicek derived the CDF F(x) to be:

With the assumptions that each loan has identical default probability p, size, loss-

given-default (LGD), that each loan has a single asset correlation ρ ( 10   ) with 

every other loan and that the number of loans approaches infinity, Vasicek derived 

the CDF  xF  to be: 
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The independent variable  1,0  x  in equation (1) is the portfolio loss expressed as 

a fraction of the total possible loss.5  The CDF  xF  is the probability that the 

actual (fractional) loss will be less than or equal to x.  By this definition, then,  xF  

is a non-decreasing function of x with   00 F  and   11 F .6  The symbol    

denotes the standard normal CDF of the quantity within the parentheses while 

 1  represents the inverse of this standard normal CDF. 

It is helpful to define and construct the probability density function (PDF) 

 xf  for the loan loss distribution.  Like the CDF, the PDF has an interpretation as 

a probability.  The product  dxxf  is the probability that the portfolio loss will 
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In equation (2), the symbol    denotes the standard normal PDF of the quantity 

within the parentheses. 

Vasicek’s equation (1) result is directly useful since it provides the 

confidence interval for specific potential loan portfolio loss amounts.  Thus, a bank 

may apply this  xF  to determine economic capital (a key risk measure) of its 

                                                 
5 The total possible loss is the sum over all portfolio loans of the product of loan size and loan LGD. 
6 As a qualification to this statement, it is possible for  0F  to be greater than zero if we permit 
discontinuous density functions.  The interpretation of such a positive value is simply that there is a non-
zero probability that the portfolio loss is precisely zero. 
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of  correlation among the Vn. For example, direct calculation 
from equation (3) shows that Corr(Vi, Vj) =  for ij. One may 
interpret Y as “state of  the economy,” or “home price appre-
ciation,” or “unemployment,” depending on the particular 
loan type one is attempting to approximate.

The asset values Vn are themselves normally distributed 
with a mean of  zero and a variance of  one. As stated above, 
all pairs of  asset values have the same (“flat”) “asset correla-
tion” . The creation of  an “asset value” to represent each 
loan has no deep meaning.10 It is merely a device to impose 
correlation. 

Once constructed in this manner, we determine if  a specific 
loan i has defaulted by comparing Vi  to -1(p), where p is the 
common default probability of  each loan. If  Vi < -1(p), then 
we say the loan is in default.

Beyond providing the desired correlation, equation (3) is 
useful because it permits us to treat the N loans as indepen-
dent once we have fixed the value of  Y. Following the well trod 
path of  Vasicek and others,11 we analyze the portfolio loan 
loss distribution for a fixed Y and then integrate over all pos-
sible values of  Y. The probability f~n that exactly n of  N loans 
will default, given a default probability of  p̂, is12 

At this point the Vasicek method invokes the “law of  large 
numbers” to stipulate that the number of  defaults n will equal 
p̂N as N " which is equivalent to the finding that the fraction 
p̂ of  all loans default.

This last reduction of  equation (4) to the specification that n 
= p̂N is the step in the current LPA derivation that requires N 
to be infinite. We propose here an improvement that approxi-
mates equation (4) for large, but finite, N. By applying Stir-
ling’s approximation13 (log N! ≈N log N-N +½log2N, where 
“log” denotes the natural logarithm) to the factorial terms of  
(4), we derive the new approximation,14 as follows:

Since N is large, we can consider x to be a continuous vari-
able, because the separation between permissible values of  x 
is 1/N. The conversion from the probability function f~n to the 
PDF f̂(x) for the continuous variable x is f̂(x) =Nf~n. We use the 
“hat” notation in f̂(x) to indicate that this PDF still assumes (or 
“is conditioned on”) a specific value of  the common factor Y. 
From equation (5), then, we get

Equation (6) is convenient and intuitive in that it is a nor-
mal density function. Hence, it is entirely consistent with the 
Central Limit Theorem and it approaches a Dirac delta func-
tion as N ". The Vasicek LPA is this Dirac limit.15 Hence, 
our extension of  the Vasicek LPA is simply the substitution of  
equation (6) for the Dirac delta function.

With f̂(x) from equation (6), we’ve determined the PDF for 
a given value of  Y. Recall that equation (3) gives the default 
behavior of  each of  the N loans. We now impose the asset 
correlation  to give us the correlated loan default PDF f(x) 
by integrating f̂(x) over all possible values of  the normally dis-
tributed Y, as follows:

As before, ( ) is the standard normal PDF. Equation (6) 
shows that f̂(x) depends on y through the default probability p̂ 
which we clarify here to be

with K already defined in equation (1).
Applying a change of  variable to the integral in equation 

(7), we find

The notation f( ) represents the (N") Vasicek LPA ex-
pression that we stated in equation (2) and copy here:

To get the CDF for the portfolio loss distribution, we go 
back to equation (7) and apply the property
to find
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11 Up to this point, we are recounting the discussion the reader will find in O. Vasicek, “Probability of Loss 
on Loan Portfolio”, KMV Working Paper, 1987 or in P. J. Schönbucher, Credit derivatives pricing models, 
John Wiley & Sons Ltd., 2003. 
12 We use the symbol p̂  here rather than p to indicate that this is the default probability contingent on a 

specific value of Y rather than the final loan default probability.  The probability function nf
~

 is the discrete 

variable analog to the probability density function  xf  for the continuous variable x. 
13 See, for example, the web reference http://planetmath.org/encyclopedia/StirlingsApproximation.html for 
this approximation of !log N  that improves as N increases.  Even with N as small as 5, the accuracy is 
better than 0.5%.  The accuracy surpasses 0.1% at N equal to 10 and continues to improve thereafter. 
14 Appendix A provides more detail on the derivation of equation (5) from equation (4). 
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Equation (6) is convenient and intuitive in that it is a normal density function.  

Hence, it is entirely consistent with the Central Limit Theorem and it approaches a 

Dirac delta function as N .  The Vasicek LPA is this Dirac limit.15  Hence, our 

extension of the Vasicek LPA is simply the substitution of equation (6) for the 

Dirac delta function. 

With  xf̂  from equation (6), we’ve determined the PDF for a given value 

of Y.  Recall that equation (3) gives the default behavior of each of the N loans.  We 

now impose the asset correlation ρ to give us the correlated loan default PDF  xf  
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As before,    is the standard normal PDF.  Equation (6) shows that  xf̂  

depends on y through the default probability p̂  which we clarify here to be: 

                                                 
15 In O. Vasicek, “Probability of Loss on Loan Portfolio”, KMV Working Paper, 1987 or in P. J. 
Schönbucher, Credit derivatives pricing models, John Wiley & Sons Ltd., 2003, these authors invoke the 
“law of large numbers” to say that a precise fraction of loan defaults will occur as N .  The 
mathematical translation of this statement is that the PDF for the fraction x is a Dirac delta function. 
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with K already defined in equation (1). 
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The notation  f  represents the ( N ) Vasicek LPA expression that we stated 

in equation (2) and copy here: 
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To get the CDF  xF  for the portfolio loss distribution, we go back to 
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An unfortunate aspect of both equations (9) and (11) is that they require 

numerical integrations.  These forms do not easily show the reader how different 

these extended LPA (“XLPA”) results differ from the LPA ( N ) counterparts.  

To reduce this difficulty, we recast equation (10) into the less compact but more 

insightful form 
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An unfortunate aspect of both equations (9) and (11) is that they require 

numerical integrations.  These forms do not easily show the reader how different 
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The independent variable x (0,1) in equation (1) is the 
portfolio loss expressed as a fraction of  the total possible loss.5 

The CDF F(x) is the probability that the actual (fractional) 
loss will be less than or equal to x. By this definition, then, F(x) 
is a non-decreasing function of  x, with and F(0) = 0 and F(1) 
= 1.6 The symbol  ( ) denotes the standard normal CDF of  
the quantity within the parentheses while -1( ) represents the 
inverse of  this standard normal CDF.

It is helpful to define and construct the probability density 
function (PDF) f(x) for the loan loss distribution. Like the CDF, 
the PDF has an interpretation as a probability. The product 
f(x)dx is the probability that the portfolio loss will ultimately 
lie in the interval (x, x+dx) as dx approaches zero. The PDF is 
the derivative of  the CDF with respect to the loss fraction x, 
as follows:

In equation (2), the symbol  ( ) denotes the standard nor-
mal PDF of  the quantity within the parentheses.

Vasicek’s equation (1) result is directly useful since it pro-
vides the confidence interval for specific potential loan port-
folio loss amounts. Thus, a bank may apply this F(x) to deter-
mine economic capital (a key risk measure) of  its holdings. A 
bank regulator may use F(x) to specify the capital (“regulatory 
capital”) it requires banks to hold against a lending portfolio.7 
A rating agency or investor in structured finance debt may use 
F(x) to estimate the probability of  loss of  the debt.

Warning Regarding the Use of  Models
Of  course, whether a bank, bank regulator, rating agency, 
or investor performs this analysis, the result is an approxi-
mation, at best, given the restrictive assumptions. First, real 
loan portfolios do not consist of  loans that are all equal in 
size, default probability and LGD. While it is reasonable to 
suspect that simplifying a real portfolio to its homogeneous 
counterpart (with mean size, mean default probability, and 
mean LGD) will lead to an adequate approximation for a suf-
ficiently large number of  loans, we have no guidance on how 
“large” this number of  loans must be.8 

Further, even if  the loan portfolio already happens to be 
homogeneous, the Vasicek formulation does not indicate how 
many loans (100? 10,000?) the portfolio must have to be well 
represented by equation (1) — which assumes an infinite num-
ber of  loans. Finally, the assumption of  a single correlation  
relating all loans is certainly an idealization, but we will retain it.

The contributions of  this article are that we remove the 
constraints of  the Vasicek model that the loan portfolio must 
be homogeneous and infinite. This generalization then al-
lows us to explore the requisite (finite) portfolio size at which 
the Vasicek approximation becomes reasonably accurate. But 
the assumptions regarding correlation remain unchanged. 

This treatment assumes pairwise correlations only. While 
the reliance on pairwise correlations is standard in the finan-
cial industry, it does ignore the possibility of  more complex 
interactions for loan defaults. Further, even within the single-
factor pairwise framework, it is well understood that a single 
correlation value is not appropriate for all points on the loss 
distribution. The Vasicek and extended Vasicek solutions we 
present here are useful tools, but the user should apply them 
in a manner that recognizes that one correlation value may 
not provide the best fit to all segments of  the loss distribution.

A broader statement that applies to the results of  this arti-
cle and to all financial models generally is that one must exer-
cise caution and discretion in the interpretation of  the model 
output. Well-constructed models are best suited as guides to 
illustrate the dependence of  the output (in this case, the port-
folio capital requirement) on the input data and assumptions 
(such as default probabilities of  loans and correlation among 
loans).9 Uncertainty in the input data necessarily translates to 
uncertainty in the output results. Hence, decisions regarding 
capital requirements, credit ratings, investment suitability or 
other real-world uses should combine expert judgment with 
the model results.

Extended Vasicek Result for a Finite  
Homogeneous Pool
The purpose of  this communication is to extend the Vasicek 
results for the CDF and PDF of  a loan portfolio — which we 
also call the Large Pool Approximation (LPA) — to the case 
of  a large (but finite), non-homogeneous portfolio. We con-
sider first the case of  a homogeneous portfolio with N loans 
with N>>1.

We impose correlation among the N loans in the same man-
ner as Vasicek by positing an asset value Vn for each loan in 
terms of  the correlation , as follows:

The random variates Y and n are independent and nor-
mally distributed with a mean of  zero and a variance of  one. 
The Vn all share the common factor Y, which is the generator 

(2)

(3)

With the assumptions that each loan has identical default probability p, size, loss-

given-default (LGD), that each loan has a single asset correlation ρ ( 10   ) with 

every other loan and that the number of loans approaches infinity, Vasicek derived 

the CDF  xF  to be: 
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 xKxF

1 1      with   pK 1       .  (1) 

The independent variable  1,0  x  in equation (1) is the portfolio loss expressed as 

a fraction of the total possible loss.5  The CDF  xF  is the probability that the 

actual (fractional) loss will be less than or equal to x.  By this definition, then,  xF  

is a non-decreasing function of x with   00 F  and   11 F .6  The symbol    

denotes the standard normal CDF of the quantity within the parentheses while 

 1  represents the inverse of this standard normal CDF. 

It is helpful to define and construct the probability density function (PDF) 

 xf  for the loan loss distribution.  Like the CDF, the PDF has an interpretation as 

a probability.  The product  dxxf  is the probability that the portfolio loss will 

ultimately lie in the interval  dxxx ,  as dx approaches zero.  The PDF is the 

derivative of the CDF with respect to the loss fraction x: 
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In equation (2), the symbol    denotes the standard normal PDF of the quantity 

within the parentheses. 

Vasicek’s equation (1) result is directly useful since it provides the 

confidence interval for specific potential loan portfolio loss amounts.  Thus, a bank 

may apply this  xF  to determine economic capital (a key risk measure) of its 

                                                 
5 The total possible loss is the sum over all portfolio loans of the product of loan size and loan LGD. 
6 As a qualification to this statement, it is possible for  0F  to be greater than zero if we permit 
discontinuous density functions.  The interpretation of such a positive value is simply that there is a non-
zero probability that the portfolio loss is precisely zero. 

translates to uncertainty in the output results.  Hence, decisions regarding capital 

requirements, credit ratings, investment suitability, or other real-world uses should 

combine expert judgment with the model results. 

Extended Vasicek Result for a Finite Homogeneous Pool 

The purpose of this communication is to extend the Vasicek results for the 

CDF and PDF of a loan portfolio – which we also call the Large Pool 

Approximation (LPA) - to the case of a large but finite, non-homogeneous 

portfolio.  We consider first the case of a homogeneous portfolio with N loans with 

1N . 

We impose correlation among the N loans in the same manner as Vasicek 

by positing an asset value nV  for each loan in terms of the correlation ρ: 

nn YV   1        .  (3) 

The random variates Y and n  are independent and normally distributed with mean 

zero and variance of one.  The nV  all share the common factor Y which is the 

generator of correlation among the nV .  For example, direct calculation from 

equation (3) shows that   ji VVCorr ,  for ji  .  One may interpret Y as “state of 

the economy”, or “home price appreciation”, or “unemployment” depending on the 

particular loan type one is attempting to approximate. 

The asset values nV  are themselves normally distributed with mean zero and 

variance of one.  As stated above, all pairs of asset values have the same (“flat”) 

“asset correlation” ρ.  The creation of an “asset value” to represent each loan has no 

deep meaning.10  It is merely a device to impose correlation.  Once constructed in 

this manner, we determine if a specific loan i has defaulted by comparing iV  to 

 p1  where p is the common default probability of each loan.  If  pVi
1 , 

then we say the loan is in default. 
                                                 
10 It’s likely that the Merton model for investigating the default probability of a corporate entity’s debt 
motivated Vasicek’s treatment.  In the Merton approach, the “asset value” really does represent something 
close to the value of the assets of the firm.  But this background thought process is not necessary. 
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Figure 2a: PDF for 10% PD and 20% Correlation

Figure 2b: PDF for 10% PD and 20% Correlation

 

 

Extended Vasicek Result for a Finite,  
Non-homogeneous Pool
To this point, the XLPA has simply extended the LPA result 
to the case of  a finite number of  loans, while still requiring 
the homogeneity of  uniform loan size, default probability, and 
LGD. Relaxing this last requirement for these portfolio pa-
rameters is not as challenging as it may seem, as long as the 
pool remains reasonably diversified.

Consider the result in equation (6) for the homogeneous 
pool loss PDF f ̂(x) given a fixed value of  the common factor Y. 
This PDF is a normal density function with mean p̂ and stan-
dard deviation                      , which we will define as . While 
we cannot directly derive the PDF for the non-homogeneous 
pool, we can derive the mean and standard deviation of  this 

unknown PDF and find:19 

In equations (14a) and (14b), Li, i, p̂i and are the known 
par amount, assumed LGD and specified default probability, 
respectively, for loan i, with i ranging from 1 to N. As Appen-
dix B shows, equation (14b) becomes the homogeneous pool 
value of                     in the special case that all the Li, i and 
p̂i equal the common values of  L,  and p̂ respectively, as one 
would expect.

Let us define the non-homogeneous pool PDF to be f̂nh(x). 
The mean of  f̂nh(x) is p̂ — the same as the mean of  the ho-
mogeneous pool PDF f̂ (x) — since we define p̂ for the non-
homogeneous portfolio to be the weighted average in equa-
tion (14a). The standard deviation of  f̂nh(x) will, in general, be 
larger than that of  f̂ (x) for the homogeneous pool of  the same 
size N and mean values of  L, , and p. For convenience, then, 
we write the standard deviation of  f̂nh(x) as                   where, 
from equation (14b), we find

Given an actual loan portfolio, it is straightforward to com-
pute the numerical value of   from equation (15).

The probability density function resulting from the addition 
of  a large number of  independent contributions approaches a 
normal density function.20 Just as we required the number of  
loans N to be large so that equation (6) provided a form of  the 
homogeneous pool PDF f̂ (x) more useful than that of  equa-
tion (4), the large N requirement permits us to specify the non-
homogeneous pool PDF  f̂nh(x) as the normal density function 
with desired mean and standard deviation, as follows:

In other words, solving the non-homogeneous pool prob-
lem is not difficult. One need only compute the  value from 
the actual portfolio parameters and modify the XLPA expres-
sions we derived previously. The only qualification is that, just 
like the original Vasicek LPA, there exists no clear guideline 
on how large N must be for the vague constraint “large N” to 
be satisfied.
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To this point, the XLPA has simply extended the LPA result to the case of a 

finite number of loans while still requiring the homogeneity of uniform loan size, 

default probability, and LGD.  Relaxing this last requirement for these portfolio 

parameters is not as challenging as it may seem as long as the pool remains 

reasonably diversified. 

Consider the result in equation (6) for the homogeneous pool loss PDF 

 xf̂  given a fixed value of the common factor Y.  This PDF is a normal density 

function with mean p̂  and standard deviation   Npp ˆ1ˆ   which we will define 

as σ.  While we cannot directly derive the PDF for the non-homogeneous pool, we 

can derive the mean and standard deviation of this unknown PDF and find:19 

Mean  
i

ii
i

iii LpL ˆ      (14a) 

                                                 
19 See Appendix B for a derivation of these results. 
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can derive the mean and standard deviation of this unknown PDF and find:19 
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19 See Appendix B for a derivation of these results. 
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In equations (14a) and (14b), iL , i , and ip̂  are the known par amount, assumed 

LGD, and specified default probability, respectively, for loan i with i ranging from 

1 to N.  As Appendix B shows, equation (14b) becomes the homogeneous pool 

value of   Npp ˆ1ˆ   in the special case that all the iL , i , and ip̂  equal the 

common values of L, λ, and p̂ , respectively, as one would expect. 

Let us define the non-homogeneous pool PDF to be  xfnh
ˆ .  The mean of 

 xfnh
ˆ  is p̂  - the same as the mean of the homogeneous pool PDF  xf̂  - since we 

define p̂  for the non-homogeneous portfolio to be the weighted average in 

equation (14a).  The standard deviation of  xfnh
ˆ  will, in general, be larger than 

that of  xf̂  for the homogeneous pool of the same size N and mean values of L, λ, 

and p̂ .  For convenience, then, we write the standard deviation of  xfnh
ˆ  as 

  Npp ˆ1ˆ   where, from equation (14b), 
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Given an actual loan portfolio, it is straightforward to compute the numerical value 

of γ from equation (15). 

The probability density function resulting from the addition of a large 

number of independent contributions approaches a normal density function.20  Just 

as we required the number of loans N to be large so that equation (6) provided a 

form of the homogeneous pool PDF  xf̂  more useful than that of equation (4), the 

large N requirement permits us to specify the non-homogeneous pool PDF  xfnh
ˆ  

as the normal density function with desired mean and standard deviation: 

                                                 
20 This is the Central Limit Theorem.  See, for example, the web reference 
http://en.wikipedia.org/wiki/Central_limit_theorem. 
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Given an actual loan portfolio, it is straightforward to compute the numerical value 

of γ from equation (15). 

The probability density function resulting from the addition of a large 

number of independent contributions approaches a normal density function.20  Just 

as we required the number of loans N to be large so that equation (6) provided a 

form of the homogeneous pool PDF  xf̂  more useful than that of equation (4), the 

large N requirement permits us to specify the non-homogeneous pool PDF  xfnh
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as the normal density function with desired mean and standard deviation: 
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In other words, solving the non-homogeneous pool problem is not difficult.  One 
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Applying the same change of  variable that produced equa-
tion (9), we write

An unfortunate aspect of  both equations (9) and (11) is that 
they require numerical integrations. These forms do not easily 
show the reader how different these extended LPA (“XLPA”) 
results differ from the LPA (N") counterparts. To reduce 
this difficulty, we recast equation (10) into the following less 
compact but more insightful form:

In equation (12), H( ) is the Heaviside function16 and F(x) is 
the LPA CDF, which we wrote in equation (1) and reproduce 
here, as follows:

Granularity Adjustment
The integral term of  equation (12) is the difference between 
the CDFs for the LPA and for the XLPA (which permits the 
number of  loans N to be finite). Numerous studies over the 
past years have investigated this difference and given it the 
descriptive term “granularity adjustment” (GA).17 These stud-
ies did not derive and evaluate the integral in equation (12); 
rather, they have developed asymptotic representations of  the 
GA in powers of  1/N.  

 We believe results of  this existing analysis are consistent 
with this new XLPA result. For example, one can show by di-
rect analysis that the difference between f(x) and f(x) in equa-
tion (9) is O(1/N). Since                 , the difference between 
F(x) and F(x) and would also behave as O(1/N) for large N. 
Numerical evaluations of  equation (12) confirm this behavior.

Comparison of  the LPA and XLPA
Figures 1a and 1b compare the PDF for the LPA (equation 
(10)) with the PDF for various values of  the number of  loans 
N for the XLPA (equation (9)), with a loan default probability 
of  10% and an (asset) correlation of  5%.18

Figure 1a: PDF for 10% PD and 5% Correlation

Figure 1b: PDF for 10% PD and 5% Correlation 
 
 

Figure 1a specifies a linear y-axis while figure 1b is loga-
rithmic in order to see the extended tail as the loss fraction 
x increases. The XLPA PDF with 10,000 loans is visually in-
distinguishable from the LPA PDF. With 1,000 loans, the dif-
ference between the XLPA and LPA is visible; while for 100 
loans, the difference is significant. Roughly speaking, then, the 
LPA is a good approximation to a finite loan pool of  1,000 
loans or greater with default probability of  10% and correla-
tion of  5%. The LPA is not a good approximation when there 
are only 100 loans.

Figures 2a and 2b (see pg. 18) change the correlation from 
5% to 20%. The shapes of  the curves change considerably, 
with the peak of  the PDF moving to lower values of  loss frac-
tion and the high-loss-fraction tail increasing. Yet the LPA ap-
pears to become a better approximation with higher correla-
tion (all else being equal).
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In equation (12),  H  is the Heaviside function16 and  xF  is the LPA CDF 

which we wrote in equation (1) and reproduce here: 
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Granularity Adjustment 

The integral term of equation (12) is the difference between the CDFs for 

the LPA and for the XLPA (which permits the number of loans N to be finite).  

Numerous studies over the past years have investigated this difference and given it 

the descriptive term “granularity adjustment” (GA).17  These studies have 

developed asymptotic representations of the GA in powers of N1  rather than 

derive and evaluate the integral in equation (12).  We believe results of this existing 

analysis are consistent with this new XLPA result.  For example, one can show by 

direct analysis that the difference between  xf  and  xf  in equation (9) is 

 NO 1 .  Since    
x

tfdtxF
0

 , the difference between  xF  and  xF  would 

also behave as  NO 1  for large N.  Numerical evaluation of equation (12) 

confirms this behavior. 

Comparison of the LPA and XLPA 

Figures 1a and 1b compare the PDF for the LPA (equation (10)) with the 

PDF for various values of the number of loans N for the XLPA (equation (9)) with 

loan default probability of 10% and (asset) correlation of 5%.18 

                                                 
16 A more descriptive name for the discontinuous Heaviside function is the “step function”.   xH  is 1 for 
x > 0, 0 for x < 0, and one-half for x = 0. 
17 An excellent and recent discussion is M. B. Gordy and J. Marrone, “Granularity Adjustment for Mark-to-
Market Credit Risk Models”, Finance and Economic Discussion Series 2010-37, Federal Reserve Board, 
June 2010. 
18 We evaluated equation (9) numerically by a sequential Simpson’s Rule technique. 
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KMV Working Paper, 1987, or in P. J. Schönbucher, Credit Deriva-
tives Pricing Models, John Wiley & Sons Ltd., 2003.

12. We use the symbol p̂ here, rather than p, to indicate that this 
is the default probability contingent on a specific value of  Y rather 
than the final loan default probability. The probability function f~n is 
the discrete variable analog to the probability density function f(x) 
for the continuous variable x.

13. See, for example, the web reference http://planetmath.org/
encyclopedia/StirlingsApproximation.html for this approximation 
of  logN! that improves as N increases. Even with N as small as 5, 
the accuracy is better than 0.5%. The accuracy surpasses 0.1% at 
N equal to 10 and continues to improve thereafter.

14. Appendix A provides more detail on the derivation of  equation 
(5) from equation (4).

15. In O. Vasicek, “Probability of  Loss on Loan Portfolio,” KMV 
Working Paper, 1987, or in P. J. Schönbucher, Credit Derivatives Pric-
ing Models, John Wiley & Sons Ltd., 2003, these authors invoke 
the “law of  large numbers” to say that a precise fraction of  loan 
defaults will occur as N�. The mathematical translation of  this 
statement is that the PDF for the fraction x is a Dirac delta func-
tion.

16. A more descriptive name for the discontinuous Heaviside func-
tion is the “step function.” H(x) is 1 for x>0, 0 for x<0 and one-half  
for x=0.

17. An excellent and recent discussion is M. B. Gordy and J. Mar-
rone, “Granularity Adjustment for Mark-to-Market Credit Risk 
Models,” Finance and Economic Discussion Series 2010-37, Fed-
eral Reserve Board, June 2010

18. We evaluated equation (9) numerically by a sequential Simp-
son’s Rule technique.

19. See Appendix B for a derivation of  these results.

20. This is the Central Limit Theorem. See, for example, the web 
reference http://en.wikipedia.org/wiki/Central_limit_theorem.

Dr. J.M. (“Joe”) Pimbley is Principal of  Maxwell Consulting, a consulting firm he 
founded in 2010, and a member of  Risk Professional’s editorial board. His recent 
and current engagements include financial risk management advisory, underwriting for 
structured and other financial instruments, and litigation testimony and consultation. 
In a prominent engagement from 2009 to 2010, Joe served as a lead investigator for 
the Examiner appointed by the Lehman bankruptcy court to resolve numerous issues 
pertaining to history’s largest bankruptcy. 

He acknowledges many helpful conversations with G. Leppert of  DBRS Inc., which 
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Appendix A
Beginning with equation (4), we seek to use Stirling’s approxi-
mation to derive equation (5). Taking the natural logarithm of  
both sides of  (4), we find

Applying
 
 

to the first term of  (A1) and similar approximations to the 
other log- factorial terms, we find

In (A2), we eliminated n by replacing it with Nx, so that x is 
the loss fraction. Both p̂ and x have values in the range (0,1). 
Inspection of  the first two terms on the right-hand side of  
(A2) shows a maximum value of  zero at x = p̂ with local qua-
dratic behavior, as follows:

We neglected the log x(1-x) term in (A2) for purposes of  ap-
proximating the x-dependence since this term is divided by N, 
which makes it small relative to the first two terms. The result 
in (A3) is useful since it shows that, from (A2), f~n will include, 
as follows, the exponential of  a large (since multiplied by N) 
and negative quadratic function:

Equation (A4) is identical to equation (5) which is what we 
sought to prove. To get (A4), we made one other approxima-
tion. We replaced x(1-x) by p̂(1-p̂) in the term preceding the 
exponential. The justification for this replacement is that the 
exponential term in (A4) will make f~n very small for any value 
of  x not sufficiently close to p̂, given that these approximations 
are reasonable only for N >>1. The replacement is extremely 
helpful because it produces both the familiar Gaussian func-
tional form for f~n and the correct normalization for  f~ (x) in 
equation (6) as a PDF.

Q U A N T  P E R S P E C T I V E S Q U A N T  P E R S P E C T I V E SThe functions  f  and  F  retain their earlier meanings as the PDF and CDF, 

respectively, of the Vasicek LPA. 
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Equation (A4) is identical to equation (5) which is what we sought to prove.  To get 

(A4), we made one other approximation.  We replaced  xx 1  by  pp ˆ1ˆ   in the 

term preceding the exponential.  The justification for this replacement is that the 

exponential term in (A4) will make nf
~  very small for any value of x not 

sufficiently close to p̂  given that these approximations are reasonable only for 

1N .  The replacement is extremely helpful since it produces the familiar 

Gaussian functional form for nf
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in equation (6) as a PDF. 

 

As a trivial example, we found earlier that 10,000 loans 
constitute a sufficiently large pool for the Vasicek LPA to 
be valid for the homogeneous pool with the parameters we 
specified. (In fact, the single greatest attribute of  the XLPA is 
simply that it provides a check on the LPA.) Suppose we now 
add just one additional loan with par amount equal to that of  
the entire pre-existing portfolio. 

Even if  the LGD and default probability of  this new loan 
equal those of  the other loans, this is a huge non-homogene-
ity! In this extreme case, the PDF of  the loss for this 10,001-
loan portfolio would not be well approximated by a normal 
density function. Hence, equation (16) would not be appro-
priate. Rather, equation (16) would only become appropriate 
for a much larger number of  loans if  this type of  extreme par 
amount idiosyncrasy is present.

Just as equation (16) extends the equation (6) homogeneous 
PDF to the case of  a more realistic non-homogeneous portfo-
lio, we give the extensions to equations (9), (11), and (12), for 
the final PDF and CDF results, as

The functions f( ) and F( ) retain their earlier meanings as 
the PDF and CDF, respectively, of  the Vasicek LPA.

FOOTNOTES
1. What we now call “modern portfolio theory” dates back to the 
seminal work of  Harry Markowitz. See H. M. Markowitz, “Portfo-
lio Selection,” The Journal of  Finance 7(1), 77-91, March 1952. See 
also H. M. Markowitz, Portfolio Selection: Efficient Diversification of  In-
vestments, John Wiley & Sons, 1959.

2. See, for example, M. B. Gordy, “A Risk-Factor Model Founda-
tion for Ratings-Based Bank Capital Rules,” J. Financial Intermedia-
tion 12, 199-232, 2003.

3. See, for example, DBRS, Inc., “Master European Granular Cor-
porate Securitisations (SME CLOs),” June 2011, at http://dbrs.
com/research/240236/master-european-granular-corporate-se-
curitisations-sme-clos.pdf  .

4. O. Vasicek. “Probability of  Loss on Loan Portfolio,” KMV 
Working Paper, 1987. See also the derivation in P. J. Schönbucher, 
Credit Derivatives Pricing Models, John Wiley & Sons Ltd., 2003.

5. The total possible loss is the sum over all portfolio loans of  the 
product of  loan size and loan LGD.

6. As a qualification to this statement, it is possible for F(0) to be 
greater than zero if  we permit discontinuous density functions. 
The interpretation of  such a positive value is simply that there is a 
non-zero probability that the portfolio loss is precisely zero.

7. See, for example, P. S. Calem and J. R. Follain, “The Asset-
Correlation Parameter in Basel II for Mortgages on Single-Family 
Residences,” Background for Public Comment on the Advanced Notice of  
Proposed Rulemaking on the Proposed New Basel Capital Accord, Board of  
Governors of  the Federal Reserve System, November 2003.

8. Non-homogeneous loan portfolios have arbitrary distributions 
of  loan size, default probability and LGD. The nature of  these 
distributions will impact whether the homogeneous counterpart 
provides a reasonable approximation for a specific, large number 
of  loans. The substitution of  “mean” values to create the homoge-
neous portfolio will need to employ suitably weighted means.

9. In this role, models serve as excellent tests of  data quality since 
erroneous input data often present vividly in the model output.

10. It’s likely that the Merton model for investigating the default 
probability of  a corporate entity’s debt motivated Vasicek’s treat-
ment. In the Merton approach, the “asset value” really does repre-
sent something close to the value of  the assets of  the firm. But this 
background thought process is not necessary.

11. Up to this point, we are recounting the discussion the reader 
will find in O. Vasicek, “Probability of  Loss on Loan Portfolio,” 
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Solving the non-homogeneous pool 
problem is not difficult. One need 
only compute the  value from the 
actual portfolio parameters and 

modify the XLPA expressions we 
derived previously.
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Appendix B
Our goal is to derive the mean and standard deviation of  the 
fractional loss of  a non-homogeneous portfolio, as shown in 
equations (14a) and (14b), respectively. With N loans of  par 
amount Li, loss-given-default (LGD) i and default probability 
p̂i, the portfolio loss is

In (B1), the i term equals 1 (probability p̂i) when loan i is in 
default and zero (probability 1- p̂i) otherwise. All summations 
range from 1 to N. The expected loss is

Dividing this expected loss by the total possible loss  
of         , we find the expected loss fraction is precisely the 
expression in (14a).

To get the standard deviation of  the loss fraction (14b), we 
must first find the variance of  the portfolio loss, which leads us 
to determine the expected square of  the loss, as follows:

Since the variance of  the loss is the expectation of  the 
squared loss minus the square of  the expected loss, we use 
(B2) and (B3) to write

Taking the square root of  this variance to get the standard 
deviation of  the portfolio loss and then dividing by the total 
possible loss          , we find the standard deviation of  loss frac-
tion to be 

which is identical to (14b).
As a final exercise, let’s consider how the standard devia-

tion expression for a non-homogeneous loan portfolio (equa-
tion (B5)) changes when we make all loan par amounts equal 
(Li �L), all LGD values equal (i �), and all default prob-
abilities equal (p̂i �p̂). The denominator of  (B5) becomes NL 
while the summation in the numerator becomes NL22p̂(1-p̂). 
Consequently, taking the square root of  this term and divid-
ing by the denominator, we find the standard deviation of  loss 
fraction for the “homogeneous portfolio limit” to be                    , 
which corresponds to our earlier results for the homogeneous 
portfolio.
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Dividing this expected loss by the total possible loss of 
i

iiL , we find the 

expected loss fraction is precisely the expression in (14a). 

To get the standard deviation of the loss fraction (14b), we must first find 

the variance of the portfolio loss which leads us to determine the expected square of 

the loss: 
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Since the variance of the loss is the expectation of the squared loss minus the 

square of the expected loss, we use (B2) and (B3) to write 
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Taking the square root of this variance to get the standard deviation of the portfolio 

loss and then dividing by the total possible loss 
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iiL , we find the standard 

deviation of loss fraction to be 
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which is identical to (14b). 

As a final exercise, let’s consider how the standard deviation expression for 

a non-homogeneous loan portfolio (equation (B5)) changes when make all loan par 

amounts equal ( LLi  ), all LGD values equal (  i ), and all default 

probabilities equal ( ppi ˆˆ  ).  The denominator of (B5) becomes NL  while the 

summation in the numerator becomes  ppNL ˆ1ˆ22  .  Hence, taking the square root 

of this term and dividing by the denominator, we find the standard deviation of loss 

fraction for the “homogeneous portfolio limit” to be   Npp ˆ1ˆ   - which 

corresponds to our earlier results for the homogeneous portfolio. 
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Let’s consider how the standard de-
viation expression for a non-homoge-
neous loan portfolio (equation (B5)) 
changes when we make all loan par 
amounts equal (Li �L), all LGD 
values equal (i �), and all de-
fault probabilities equal (pi �p̂). 
The denominator of  (B5) becomes 
NL while the summation in the 
numerator becomes NL22p̂(1-p̂). 
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Finding meaning in the noise.
Smarter technology for a Smarter Planet:

An unprecedented amount of information flows through companies every day. But to what effect?  
A recent study found that 52% of managers don’t have confidence in the information they rely on to do their job. 
Without the right approach to business intelligence, companies are struggling to turn all that information into sound 
decisions. IBM business intelligence and performance management solutions give you the smarter tools you need to 
access the right information, making it available to the right people, when and how they need it. Today IBM is helping 
over 20,000 companies spot trends, mitigate risk and make better decisions, faster. 

A smarter business needs smarter software, systems and services. 
Let’s build a smarter planet. ibm.com/intelligence
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